

Section 8

Wrap-Up

Lessons Learned

Swift

- Augment Malindi with additional ground station support (e.g., USN)
- Have ability to send Burst Alert Messages through the ground station link
- Automate the data processing "pipeline" and simplify the Level 0 processing
- Work IT Security planning with Code 290 early and bring on an expert
- Use ground system-level documents and reviews to help ensure elements (systems and people) work and function as a whole
- Ensure FOT staffing is realistic Swift was initially too light

IMAGE

- Plan and fund so that the FOT can spend significant amounts of time at the spacecraft I&T facility
- Put MOC systems in the I&T facility as well

▶ GRO

- Plan and fund so that the FOT can spend significant amounts of time at the spacecraft I&T facility
- Put MOC systems in the I&T facility as well

Open Issues

- Italians (ASI) unable to commit funds to provide the Malindi Ground Station
 - Keeping spacecraft requirement to be compatible with the Malindi 6 meter antenna in case ASI funding returns.
 - Determined that USN can provide the needed support with stations in Hawaii and Australia, so issue is really more of a cost issue
 - Conducting Ku-Band Band Study with Spectrum Astro to determine feasibility, cost, etc. of adding TDRSS Ku-band capability to spacecraft
 - Also looking at bringing in Wallops for additional support
- Between latter part of spacecraft I&T and beginning of observatory I&T, Spectrum Astro availability is limited, so their ability to support the ground system and operations activities is limited
 - Working within Project and with Spectrum to determine level/type of effort needed versus level/type of effort available
 - Activities potentially affected: MOR, Mission Ops Readiness Plan, GRT's, interface testing with the spacecraft and Hotbench

Open Risks

- Need permanent LAT IOC Operations Lead
 - SLAC pursuing bringing on permanent hire.
 - Dave Lung serving as interim lead

TBD/TBR Summary

- The TOO latency requirement (6 hours) does not have a reliability number associated with it like the other latency requirements
 - Example: Complete data processing within 72 hours 95% of the time
 - Working with Systems Management team to reexamine MSS requirement
- Ground system may not be able to meet the current one second allocation (out of 7) for Burst Alert processing without cost impacts
 - Working with Project Scientist and Systems Management teams
- Current ground allocation of 12 hours (out of 72) for data processing latency will be difficult to meet without cost impacts
 - Particularly affects the bandwidth requirements on the data network
 - Working with Systems Management Team to reexamine allocation to spacecraft (36 hours) and consider reallocating some to the ground system
- Need to confirm that the spacecraft as designed can support the Differenced One-Way Doppler (DOWD)
 - Working with Spectrum Astro to determine if there are any Communication Subsystem incompatibilities

Road to Ground PDR (December '03)

- Baseline the GSRD, Ops Concept Document Revision A, and the Ground System Project Plan (by Sept'03)
- Complete long term contract with Goldbelt Orca/Omitron for MOC implementation and flight ops (by Sept'03)
- Generate preliminary versions of ground system ICD's and IT Security documents by GPDR
- Generate preliminary version of Ground System Test Plan and Requirements Verification Matrix by GPDR
 - Label launch critical requirements based on mapping to launch critical functionality list in GSRD
 - Assign requirements to GRT's
- Begin first LAT Data Challenge (Sept'03)
- Conduct LAT IOC Peer Review (Nov'03)
- Conduct GBM IOC PDR (Oct'03)

GSRR Accomplishments

- Described plan and schedule for managing, implementing and testing the GLAST Ground System
- Presented plan and schedule for ground system documentation
- Presented the ground system requirements
- Presented the operations concept within which the requirements are derived and understood
- Provided preliminary, early insight into future plans for achieving operations readiness
- Identified open items, risks and TBD's